摩托车工作原理
自1998年以来,美国的摩托车数量增加了34% [参考]。摩托车为什么会突然流行?与汽车不同,摩托车使骑手与驾驶经验息息相关。但是,这不只是冒险和自由。随着汽油价格的上涨,百公里油耗3.3升的节能摩托车成为高油耗汽车诱人的替代工具。
Dee Kull 供图,MorgueFile
本文中,我们将了解现代摩托车的工作原理,多年来摩托车设计方法的发展及未来摩托车的可能改进方式。
摩托车基础知识
摩托车是用于承载一或两名乘客的机动车。通常,摩托车只有两个车轮,但是,可将任何与地面接触车轮少于4个的车辆归为摩托车。三轮的摩托车包括“出租车”(摩托车加边车)和“三轮车”。
Kenn Kiser 供图,Pixel Perfect Digital
2001本田Gold Wing GL1800装配Monarch三轮转换
现代摩托车的设计布局于1914年确定,且至今基本保持不变。摩托车的整个结构和功能非常简单。其中包括一台汽油发动机,这种发动机与汽车中的一样,将活塞的往复式运动转换为旋转运动。变速器系统将此运动传递给后轮。随着后轮的转动,推动摩托车前进。通过手把转动前轮,并使摩托车朝一侧或另一侧倾斜,以实现转向。两个手柄使车手可操作离合器和前制动器,而两个脚踏板使其可以换挡和控制后制动器。
军用摩托车
Photo courtesy
-->哈雷戴维森军用摩托车
1914年一战爆发时,汽车没有派上用场。 摩托车作为可靠的交通工具弥补了这一空白。 战争中,摩托车由于实用而被充分使用。 美国和欧洲军队将摩托车广泛用于侦察和传递信息,并在某些情形下参与战斗。1917年生产的所有哈雷戴维森摩托车大约有1/3卖给美国军队。1918年,这一数字上升到50%。到战争结束时,估计军队大约使用了2万辆摩托车,其中大多数为哈雷戴维森摩托车。 [参考]
摩托车发动机
摩托车发动机的工作方式与汽车发动机相同。发动机由活塞、气缸体和气缸盖组成,气缸盖包含气门机构。 火花点燃燃料与空气混合物时会引起爆炸,推动活塞在气缸体内上下移动。 气门随之打开和关闭,以便燃料与空气混合物进入燃烧室。 活塞的上下运动带动曲轴转动,将活塞的能量转变为旋转运动。 通过变速器将曲轴的旋转力传递给摩托车的后轮。
­­
典型汽车发动机的内部构造
通常依据三个特征对摩托车发动机进行分类: 发动机的气缸数、燃烧室容量或动力循环的冲程数。
气缸
摩托车可有1-6个气缸。 多年来,V-twin设计是美国、欧洲和日本摩托车工程师的选择。V-twin因两个气缸成V字形而得名,例如下面所示的经典哈雷戴维森V-twin发动机。 注意哈雷戴维森V-twin中的45度°,其他制造商可变换此角度,以减少振动。
哈雷戴维森机车公司供图
RevolutionTM哈雷戴维森V-twin发动机
V-twin只是排列两个气缸的一种方式。 如果要使活塞彼此相对,排列气缸时应选择反双型设计。 而并列双缸发动机将活塞并排垂直放置。
当前,最流行的设计为四缸。这种设计运行更平稳,并且转速较两缸发动机更快。 四个气缸可并排放置,或者呈V字型排列,V字型的两侧各有两个气缸。
容量
摩托车发动机燃烧室的大小与其输出功率直接相关。 上限值约为1500cc(立方厘米),下限值约为50cc。 后一种发动机通常用于小型摩托车(机动自行车),其耗油量为每100公里2.35升,最快速度只能达到每小时48-56公里。
接下来,我们将研究摩托车的变速器。
名称由来术语“骑摩托车的人”通常与摩托帮成员相关,这就是许多摩托车爱好者喜欢“摩托车手”或者“骑摩托车者”这一术语的原因。获得重生的是四五十岁的摩托车手,直到最近才从摩托车主中统计出这一数字。
摩托车发动机可以产生较大的功率,必须以可控方式将这些功率传递给摩托车的车轮。摩托车变速器通过一系列结构将功率传递给后轮,这些结构包括齿轮组、离合器和传动系统。
Photo courtesy
-->简单的变速器
齿轮组
齿轮组是一组可使摩托车从完全停止到巡航速度的齿轮。摩托车上的变速器通常有4-6个齿轮。但是,小型摩托车可能只有2个。通过变速杆啮合齿轮,就可以在变速器内移动齿轮换挡叉。
离合器
离合器的工作就是接合和断开发动机曲轴传递给变速器的动力。如果没有离合器,停止车轮转动的唯一方式就是关闭发动机,在任何类型的机动车辆中这都是不切实际的。离合器就是一系列弹簧加载板,将其一起按下时,将变速器连接到曲柄轴上。要换挡时,摩托车手用离合器将变速器与曲柄轴断开。一旦选定新挡,使用离合器重新建立连接。
传动系统
可用三种基本方式将发动机功率传递给摩托车后轮:链条、皮带或轴。链条主减速器系统是目前最常用的方式。在此系统中,将安装在输出轴上的链轮(即变速器中的轴)连接到通过金属链附加在摩托车后轮的链轮上。变速器转动较小的前部链轮时,沿着链条将功率传递给更大的后部链轮,然后转动后轮。这类系统必须润滑和调整,且由于链条伸长和链轮磨损,还需定期更换。
Buell Lightning上的皮带传动
皮带传动是链条传动的替代方法。早期的摩托车经常使用皮带,可用弹簧加载的滑轮和手柄张紧皮带,以提供牵引力。皮带容易打滑,尤其在潮湿天气,因此经常不采用这种方法,而用其他材料和设计代替。20世纪80年代末,材料的发展使皮带主减速器系统具有可行性。现在的皮带由带齿的橡胶制成,且工作方式与金属链相同。与金属链不同的是,皮带无需润滑或洗涤剂。
有时也使用轴主减速器。此系统通过传动轴将功率传递给后轮。轴传动非常流行,因为这种方式非常便利,且无需链条系统那么多的维护。但是,轴传动更重,有时会导致摩托车尾部形成称为顶轴的不必要的震动。
摩擦传动
摩擦传动是一些摩托车使用的另外一种变速器。 摩擦传动是一类无级变速器,即CVT。其中,传动比随着连接到发动机的传动盘(传动盘)相对于连接到后轮的另一个传动盘(驱动盘)旋转而发生变化。可通过改变两盘表面间接触点的半径,实现不同的传动比。 无级变速器在机动车辆中具有悠久的历史,而可变摩擦变速器于20世纪早期出现在摩托车中。
摩托车底盘
座位和附件
摩托车上的座位设计用于承载一或两名乘客。座位位于油箱后,且易于从摩托车架上拆下。有些座位下或座位后有小型货舱。如需更多存储空间和鞍囊,可将硬塑料盒或皮套安装在后轮两侧或后挡板上。大型摩托车甚至可以拖动小型拖车或边车。边车有自己的车轮作支撑,并可附加座位容纳一名乘客。
摩托车底盘由车架、悬架装置、车轮和制动器组成。以下将简要说明每个组件。
车架
摩托车具有由钢、铝或合金做成的车架。大多数车架由空心管组成,作为安装传动装置和发动机等组件的骨架。车架也使车轮成直线,以保持对摩托车的操控。
悬架
车架同时也是悬架系统的支撑物,悬架是一组有助于保持车轮与路面接触,并对颠簸和摇晃形成缓冲的弹簧和减振器。摆臂设计是后部悬架装置最常见的解决方案。在在一端,摆臂控制后轮轴。另一端,通过摆臂枢轴螺栓将其附加到车架上。减振器从摆臂枢轴螺栓向上延伸,并附加到座位正下方的车架顶部。前轮和轴安装在带内部减振器以及内部或外部弹簧的伸缩叉上。
Photo courtesy
-->这种哈雷戴维森Softail具有摆臂后悬架装置
车轮
尽管在20世纪70年代引入的一些车型提供铸钢车轮,但是摩托车轮通常采用铝质轮辋或钢质轮辋,并带有轮辐。铸钢车轮允许摩托车使用无内胎轮胎,即它没有内胎保持压缩空气,这与传统的气轮胎不同。空气保持在轮辋与轮胎之间,依赖于轮辋与轮胎之间形成的密封空间维持内部气压。
无内胎轮胎比有内胎轮胎爆胎的可能性小,但是,由于轮辋的小型弯曲可能导致放气,所以在崎岖路面上可能会发生问题。轮胎的各种设计,可满足不同地形和驾驶条件的要求。例如,泥土路摩托车轮胎具有很深的多节胎面,以在泥土或颗粒上形成最大抓地力。旅行摩托车轮胎由硬质橡胶做成,通常提供的抓地力较小,但是持续时间更长。尽管与路面接触的面积小,运动型和竞赛型轮胎(通常为钢丝带束的子午线轮胎)却可提供惊人的抓地力。